THERMAL CONDUCTIVITY OF HIGHER SATURATED n-HYDROCARBONS OVER WIDE RANGES OF TEMPERATURE AND PRESSURE

R. A. Mustafaev

UDC 536.222

Results are shown of an experimental study concerning the thermal conductivity of nalkanes over a wide range of values of the state variables. Numerical formulas are derived which agree closely with the test data.

Since a few years ago the thermal conductivity of liquids has been measured by transient methods with, for example, spherical or cylindrical double calorimeters [1-3]. These methods do not account for the temperature dependence of thermophysical properties, neither is the testing time (at high temperatures) much shorter than that required in steady-state methods and, furthermore, they do not yield in a single test the temperature characteristic of thermal conductivity. In this respect, monotonic heating methods are most effective for measurements over a wide temperature range. These methods are more convenient than others, because they make it unnecessary during measurements over a wide temperature range to repeatedly establish a steady state, and also because they make it possible over an essentially unlimited temperature range to determine the temperature characteristic of thermal conductivity $\lambda(T)$ from a single test.

This experimental study was concerned with the thermal conductivity of higher n-alkanes (n-hexadecane, n-heptadecane, n-octadecane, and n-nonadecane). The tests covered the 40-420 °C temperature range as well as pressures up to 500 kg/cm^2 . The characteristics of the tested hydrocarbons are given in Table 1. The measurements were made by a monotonic heating method which had been developed for this purpose. The theoretical principle of this method, the test procedure, and the apparatus design have all been described earlier in [4, 5].

The main component of the apparatus was a double calorimeter consisting of two coaxial cylinders. The inner cylinder (rod) was made of grade M1 copper. The active rod surfaces were carefully ground, chrome plated, and polished. The outer cylinder was tube of grade 1Kh18N9T stainless steel pressed into a massive copper block. The basic dimensions of this double calorimeter are given in [5]. The gap between both cylinders was filled with the test liquid. The gap, uniform over the entire rod surface, was maintained by means of specially calibrated quartz balls pressed into the rod. For calculations we used the formula

$$\lambda(\vec{t}) = \frac{b_{\mathbf{r}}N(t)}{(\vartheta_{h} - \vartheta_{0})} (1 + \Delta\sigma_{\mathbf{r}} + \Delta\sigma_{\vartheta} + \Delta\sigma_{\vartheta}) - \Delta\lambda.$$
(1)

With $\overline{\mathbf{t}} = \mathbf{t_r}(\tau) + 1/2\vartheta_h(\tau)$; $N(\mathbf{t}) = hC_r/\overline{F}$; a correction $\Delta\sigma_r = C/2C_r$ for the heat capacity of the rod; a correction $\Delta\sigma_{\bar{\Phi}} = [-\Delta\sigma_r(\Delta F_{tr}/3\overline{F}) + 1/8(\Delta F_{tr}/\overline{F})^2]$ for the curvature of the rod; a correction $\Delta\sigma_{\vartheta} = 1/6[\Delta\sigma_r \cdot (2k_{\vartheta} - k_r)\overline{\vartheta}_h - 1/2n_\lambda\overline{\vartheta}_h^2]$ for nonlinearity; a correction $\Delta\lambda(t)$ for heat leakage through fasteners in contact with the liquid layer, with $\Delta F_{tr} = F_t - F_r$, and the relative temperature coefficients $k_{\vartheta} = (1/\vartheta_h)(d\vartheta_h/dt)$; $k_r = (1/C)(dC/dt)$; $n_{\lambda} = (1/2\lambda)(d^2\lambda/dt^2)$.

The form of the correction terms suggests that $\Delta \sigma_{\mathbf{r}}$ can be estimated analytically from rough data on the thermal capacity of the liquid layer, while correction terms $\Delta \sigma_{\psi}$ and $\Delta \sigma_{\vartheta}$ amounting to $8 \cdot 10^{-4}$ and $7 \cdot 10^{-4}$, respectively (for the given instrument design and the far from critical test mode) may be omitted in the calculation. With the thermocouples installed permanently, correction ϑ_0 depends only on the temperature level and on the heating rate and, therefore, is determined in calibration tests as an "instrument

Azerbaidzan Polytechnic Institute, Baku. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 24, No. 4, pp. 663-668, April, 1973. Original article submitted July 7, 1972.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

TABLE 1. Characteristics of Tested Hydrocarbons

n-Hexadecane	$\rho_4^{20} = 0,7736$	$n_D^{20} = 1,4344$	t _{boi1} =287,5 °C
n-Heptadecane	$ ho_4^{30}=0,7714$	$n_D^{30} = 1,4330$	t _{boi1} =302,5 °C
n-Octadecane	$ ho_4^{50} = 0,7622$	$n_D^{50} = 1,4272$	t _{boil} =318,2 °C
n-Nonadecane	$\rho_4^{50}=0,7761$	$n_D^{50} = 1,4296$	t _{boil} =332,2 °C

TABLE 2. Rounded Values of Thermal Conductivity $\lambda \cdot 10^4$ (W/m·deg as a function of temperature and pressure, for four saturated n-hy-drocarbons)

		P,kg/cm ²											
τ, Ο	1	100	200	300	400	500	1	50	100	200	300	400	500
	n-Hexadecane					n-Heptadecane							
$\begin{array}{c} 40\\ 60\\ 80\\ 100\\ 120\\ 140\\ 160\\ 200\\ 220\\ 240\\ 260\\ 280\\ 300\\ 320\\ 340\\ 360\\ 380\\ 400\\ 420 \end{array}$	1400 1364 1323 1284 1284 1204 1168 1132 1095 1062 1034 1008	144 1 1407 1367 1292 1256 1224 1192 1160 1132 1017 1072 1036 1025 1015 1008 1002 995	1476 1439 1401 1365 1329 1295 1265 1206 1181 1163 1145 1131 1118 1104 1094 1078 1074 1069	1505 1468 1430 1396 1362 1330 1276 1249 1228 1215 1199 1186 1174 1163 1153 1145 1135 1135 1132 1127	1532 1495 1458 1426 1394 1363 1362 1289 1273 1262 1289 1237 1225 1214 1205 1196 1189 1182 1176	$\begin{array}{c} 1555\\ 1519\\ 1483\\ 1454\\ 1425\\ 1396\\ 1325\\ 1316\\ 1325\\ 1311\\ 1298\\ 1286\\ 1275\\ 1265\\ 1257\\ 1250\\ 1244\\ 1239\\ 1234\\ 1230\\ \end{array}$	1427 1391 1352 1314 1282 1240 1201 1161 1125 1088 1059 1030 1005	1446 1412 1373 1297 1262 1297 1262 1290 1155 1125 1099 1075 1056 1039 1022 1006 985 985 978 973	1465 1431 1396 1359 1328 1290 1254 1220 1187 1158 1135 1112 1097 1080 1067 1055 1043 1032 1026 1020	1500 1466 1430 1394 1365 1265 1263 1292 1207 1183 166 1153 1138 1127 1118 1106 1097 1093 1087	1529 1495 1427 1398 1365 1333 1304 1275 1254 1234 1206 1197 1182 1176 1156 1151 1148	1556 1523 1492 1458 1430 1398 1367 1340 1315 1293 1277 1264 1253 1243 1232 1225 1216 1210 1204 1202	$\begin{array}{c} 1582\\ 1550\\ 1521\\ 1488\\ 1460\\ 1429\\ 1401\\ 1377\\ 1348\\ 1330\\ 1317\\ 1305\\ 1293\\ 1286\\ 1278\\ 1272\\ 1264\\ 1250\\ 1254\\ 1250\\ \end{array}$
	1	100	200	300	400	500	1	50	100	200	300	400	500
	n-Octadecane					n-Nonadecane							
$\begin{array}{c} 40\\ 60\\ 80\\ 100\\ 120\\ 140\\ 160\\ 200\\ 220\\ 240\\ 260\\ 260\\ 300\\ 320\\ 340\\ 360\\ 380\\ 400\\ 420 \end{array}$	1448 1414 1378 1343 1208 1273 1202 1167 1134 1102 1073 1043 1017	1487 1456 1422 1388 1354 1321 1290 1260 1228 1198 1172 1151 1130 1110 1095 1082 1071 1060 1050 1044	1519 1487 1453 1421 1390 1362 1332 1302 1274 1252 1228 1208 1129 1174 1162 1150 1138 1128 1120 1114	1549 1518 1484 1424 1396 1368 1339 1315 1294 1274 1257 1241 1226 1215 1204 1193 1182 1174	$\begin{array}{c} 1578\\ 1547\\ 1514\\ 1485\\ 1429\\ 1400\\ 1375\\ 1352\\ 1332\\ 1314\\ 1229\\ 1286\\ 1275\\ 1264\\ 1255\\ 1264\\ 1255\\ 1248\\ 1230\\ 1223\\ \end{array}$	$\begin{array}{c} 1605\\ 1575\\ 1543\\ 1512\\ 1485\\ 1461\\ 1433\\ 1409\\ 1386\\ 1368\\ 1352\\ 1339\\ 1327\\ 1318\\ 1308\\ 1302\\ 1295\\ 1289\\ 1284\\ 1279\\ \end{array}$	1470 1435 1400 1364 1330 1295 1229 1224 1190 1159 1129 1100 1074 1049 1024	1489 1454 1421 1385 1352 1317 1286 1253 1221 1192 1164 1140 1117 1098 1075 1062 1049 1035 1020 1007	1506 1472 1439 1405 1372 1339 1308 1250 1224 1201 1180 1160 1142 1125 1110 1082 1070 1060	1540 1504 1472 1439 1408 1377 1346 1319 1292 1272 1251 1232 1216 1200 1186 1175 1166 1154 1145 1140	1570 1534 1503 1471 1441 1442 1382 1357 1333 1315 1297 1281 1268 1255 1244 1223 1215 1206 1198	$\begin{array}{c} 1598\\ 1562\\ 1532\\ 1501\\ 1472\\ 1443\\ 1416\\ 1393\\ 1372\\ 1355\\ 1341\\ 1326\\ 1316\\ 1305\\ 1295\\ 1286\\ 1279\\ 1264\\ 1257\\ \end{array}$	$\begin{array}{c} 1625\\ 1591\\ 1561\\ 1530\\ 1502\\ 1474\\ 1448\\ 1427\\ 1408\\ 1394\\ 1382\\ 1368\\ 1358\\ 1351\\ 1345\\ 1338\\ 1325\\ 1338\\ 1325\\ 1318\\ 1313\end{array}$

constant." Correction $\Delta\lambda(t)$ is also an "instrument constant" in the case of a permanent test setup.

A special feature of formula (1) is that it has been derived with the temperature characteristic of thermal conductivity $\lambda(t)$ taken into account and it is quite suitable for determining this characteristic from a single test.

In accordance with the formula, the determination of $\lambda(t)$ for a liquid reduces to a measurement of the heating rate $b_r(\tau)$ of the rod and the temperature drop ϑ_h across the layer.

The temperatures were measured with Nichrome-constantan thermocouples (electrodes 0.2 mm in diameter) which had been precalibrated at the D. I. Mendeleev VNIIM. The heating rate and the temperature drop were measured with a model R-306 class 0.015 low-resistance potentiometer, a model M17 /4 mirror galvanometer, and a model 51SD stop watch graduated in 0.1 sec. The pressure was produced and measured with a model MP-600 loading piston manometer and a set of class 0.2 standard manometers.

Fig. 1. Thermal conductivity λ (W/m · deg) of n-heptadecane as a function of the temperature t (°C) and the pressure P (kg/cm²).

Fig. 2. Universal curve of thermal conductivity λ (W/m·deg) as a function of the referred temperature $\theta = T/T_{\text{boil}}$, for: 1) n-hexadecane; 2) n-hepta-decane; 3) n-octadecane; 4) n-nonadecane.

Measurements were made at various heating rates, so that the temperature drop across the liquid layer could be varied within 3-8°C limits. The absence of convection was ascertained by measurements at various heating rates. Rounded values of the $\lambda(t)$ characteristics are given in Table 2 for the four tested hydrocarbons. The maximum relative measurement error was estimated at $\pm 2\%$. The repeatability of test data taken at the same values of the state variables was within 0.8-1.0%. Isobars were then plotted on the basis of these data and, for their intercorrelation, isotherms were also plotted by appropriate point matching. The isobars and the isotherms of thermal conductivity are shown in Fig. 1 for n-heptadecane. The isobars and the isotherms of thermal conductivity for n-hexadecane, n-octadecane, and n-nonadecane are analogous.

An analysis of the data shows that the thermal conductivity of hydrocarbons decreases with rising temperature and increases with rising pressure. The effect of pressure becomes more appreciable at higher temperatures, which causes the isobars of thermal conductivity to bend for all hydrocarbons. The isobars and the isotherms of thermal conductivity are not straight lines. They are slightly bent curves, the isobars bending downward to the temperature axis and the isotherms bending upward from the pressure axis.

The test data pertaining to the thermal conductivity of all four hydrocarbons, as a function of the pressure along isotherms, can be described rather accurately by the equation

$$\lambda = \lambda_0 + k \left(P - P_0 \right), \tag{2}$$

with λ_0 denoting the thermal conductivity at $P = P_0$; P_0 denoting the atmospheric pressure; and P denoting the applied pressure. The coefficient $k = (\partial \lambda / \partial P)_T$ at various temperatures can be calculated according to the equation

$$k = k_0 + A \left(t - t_0 \right),$$

where $k_0 = k_{t=t_0} = 3.2 \cdot 10^{-5}$ and $A = 8 \cdot 10^{-8}$.

Modern theory of the liquid state yields no analytical relation for calculating the thermophysical properties. It is worthwhile, therefore, to develop semiempirical and empirical methods of calculating the thermophysical properties. Several formulas have been proposed recently for calculating the thermal

conductivity of liquids. The authors usually aimed at establishing some empirical relations for the thermal conductivity of individual hydrocarbons, without attempting to cover various hydrocarbon groups by a single formula. Another common drawback of these formulas is that they are either approximations covering a narrow temperature range or are complicated and contain quantities the determination of which requires a design of special experiments.

Test data pertaining to the thermal conductivity of liquids are usually generalized by functional relations in the form

$$\frac{\lambda_{p} \cdot - \lambda_{t}}{\lambda_{pc,tc} - \lambda_{tcr}} = f_{1} \left(\frac{\rho}{\rho_{cr}} \right); \quad \frac{\lambda_{p,t}}{\lambda_{pc,tc}} = f_{2} (\pi, \tau);$$
$$\frac{\lambda_{t}}{\lambda_{tcr}} = f_{3} (\tau); \quad \frac{\lambda_{t}}{\lambda_{1}} = f_{4} (\tau).$$

In order to be able to use them, one must know the values of λ_{p_c} , λ_{t_c} , and λ_i . Unfortunately, these values cannot be found in the technical literature for most liquids and, especially, for saturated n-hydrocarbons.

In order to generalize data on the thermal conductivity of normal liquids, the author has established in [7] that under atmospheric pressure there exists a single functional relation between the thermal conductivity and the referred temperature $\tau = t/t_{cr}$. An excellent total correlation can be obtained if the boiling point T_{boil} of a liquid is used as the reference temperature and $\theta = T/T_{boil}$. The thermal conductivity data for the four liquid hydrocarbons fit then along a straight line in $\lambda = f(\theta)$ coordinates. In Fig. 2 are shown the results of an evaluation of these thermal conductivity data for higher n-alkanes, in λ , θ coordinates. According to the graph, the data fit closely on a single curve represented by the equation

$$\lambda_t = 0.2289 - 0.1822\theta + 0.0511\theta^2. \tag{3}$$

Equation (3) yields the thermal conductivity of higher n-alkanes directly, over the entire range of liquid state. The discrepancy between test values of λ and those calculated according to formula (3) is less than 1% over the entire temperature range. Only at $\theta = 0.95$ is the discrepancy maximum and almost 2%.

An analysis of the obtained experimental material on the thermal conductivity of saturated n-hydrocarbons under high pressures has yielded a universal formula for this thermal conductivity as a function of both temperature and pressure:

$$\lambda_{p,t} = \left[\lambda_{\theta=0.5} + 5.5 \cdot 10^{-5} (P - P_0)\right] \frac{A}{\sqrt{\theta}},$$

$$A = 0.0875\theta + 0.648.$$
(4)

Here $\lambda_{\theta=0.5} = 0.148$ is the thermal conductivity at $\theta = 0.5$.

The special feature of formulas (3) and (4) is that their coefficients are common for all the tested hydrocarbons and that they yield directly the thermal conductivity of higher n-alkanes (n-hexadecane, n-heptadecane, n-octadecane, and n-nonadecane) over a wide range of values of the state variables.

NOTATION

Cr	is the thermal capacity of copper rod;
h, F	are the thickness and mean cross section of liquid layer;
b _r	is the heating rate of rod;
⁻ √ [−] h	is the mean-over-the-surface temperature drop across the liquid layer;
v.	is the correction for thermocouple readings of the temperature drop $\overline{\vartheta}_{\mathbf{h}}$;
F _t , F _r	are the surface area of tube and of rod, respectively, contiguous to the liquid;
λ_t, ρ_t	are the thermal conductivity and density under atmospheric pressure and at temperature t;
λp,t _{cr}	is the thermal conductivity under pressure P and temperature t;
$\lambda_{\rm pc}$, tc	is the thermal conductivity at critical point;
$\rho_{\rm cr}$	is the density at critical point;
λ ₁	is the thermal conductivity under atmospheric pressure and at $t = 0.5 t_{cr}$;
$\tau = t/t_{er};$	
$\pi = \mathbf{P}/\mathbf{P_{cr}}.$	

LITERATURE CITED

- 1. A. K. Abas-zade and R. A. Mustafaev, Dokl. Akad. Nauk AzSSR, 16, No. 3 (1960).
- 2. R. A. Mustafaev, Izv. Vuzov, Priborostroenie, No. 6, 100 (1959).
- 3. I. F. Golubev, Teploénergetika, No. 12, 78 (1963).
- 4. R. A. Mustafaev, Izv. Vuzov, Neft' i Gaz, No. 8, 63 (1971).
- 5. R. A. Mustafaev, Izv. Vuzov, Priborostroenie, No. 4, 102 (1971).
- 6. N. V. Tsederberg, Thermal Conductivity of Gases and Liquids [in Russian], Gosénergoizdat, Moscow (1963).
- 7. R. A. Mustafaev, Izv. Vuzov, Neft' i Gaz, No. 6, 75 (1968).